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Abstract 
 

The Asymptotically Ideal Model (AIM), first estimated by Barnett and Yue (1998), based on the Muntz-Szatz 

series expansion as described by Barnett and Jonas (1983), is used to estimate money demand using quarterly 

US data from 1960 to the first quarter of 2004. We find that monetary assets are generally substitutes and that 

the unitary income elasticity postulate is satisfied. Unfortunately though, we are unable to resolve the debate 

as to whether or not money demand is a stable process. We are also not able to test the money neutrality 

hypothesis in our model, but a clear way on how to do this is suggested for the purpose of future research.  
 

Keywords: Money Demand, Monetary Assets, Asymptotically Ideal Model, Seemingly Unrelated 

Regression, Semi-nonparametric. 
 

JEL Classification: C13, C14, C40, E41. 
 

Introduction 
 

This paper estimates a money demand function based on the microeconomic foundations of the money 

demand process using quarterly US data from 1960 to 2004. Such a contribution is necessary as the standard 

approaches have fallen short regarding the explanation of major phenomena and experience. Some of these 

short comings are evidenced by the general inability to explain the behavior of the money demand process in 

anomalous periods such as “the case of the missing money”, “the great velocity decline”, “the M1 explosion” 

and, of course, the German hyperinflations of the 1920‟s. A notable exception to these generally failed models 

is the work of Baba, Hendry and Starr (BHS) (1992), who have been able to explain the first three above 

mentioned anomalies. Another exception to the rule is Michael, Nobay and Peel (1994) which provides an 

explanation of the behavior of the money demand process during the German hyperinflation. For expositions 

employing the standard approach to estimating money demand, which is usually in the cointegration tradition, 

see Samreth (2008) as well as Bashier and Dahlan (2011). In more recent times, there have been panel 

approaches to estimating money demand such as Narayan (2009).  
 

Issues regarding money demand have long been at the forefront of economic thinking (see for example 

Friedman (1956)). However, even the most well educated debates and empirical investigations continue to be 

eluded by this very important aspect of the functioning of the economy. Debates of money demand often 

focus on a structural aggregate representation of the process, and usually posit that it is a function of income, 

interest rates and prices, among other determinants. This has led to crude aggregated formulations of structural 

equations in most of the early attempts to capture the data generating mechanism underlying the money 

demand process. Unfortunately though, these models, with a few exceptions, as noted above have been unable 

to capture the patterns underlying the money demand process in what are generally considered anomalous 

periods.  
 

In light of these failures along with the Lucas critique and a now generally accepted view that the 

microeconomic foundations should play a greater role in all economic discourse, there have been a number of 

attempts to estimate money demand functions based on the micro foundations underlying the process. Before 

moving on to the actual model that we estimate let us give a brief overview of the literature underlying the 

estimation of demand systems premised on microeconomic foundations. Of course, the main specifications of 

microeconomic expenditure/demand systems are the: (i) ALIDS model of Deaton and Muellbauer (1980), (ii) 

The Translog model of Christensen, Jorgensen and Lau (1975) and (iii) The Rotterdam model of Barnett 

(1979).  In the case of (i) and (ii), which both have at the heart of their foundation a Taylor series expansion, it 

is widely known that these functional forms may not maintain their flexibility properties globally, or 

necessarily meet the regularity and/or other restrictions of utility maximizing behavior see Barnett (1983), 

Gallant (1981), Wales (1977) and White (1980).  
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In general, in these models there is a trade off between global regularity and global flexibility and in fact both 

may never be obtained simultaneously. The Rotterdam model, on the other hand, is not considered reasonable 

because it is highly restrictive in that it implies that the underlying utility function is either Cobb-Douglas or 

CES, and, thus, that the elasticities of substitution are constant.  
 

As a consequence, the attempts to use microeconomic specifications have tried to make use of functional 

forms which are both globally flexible, separable and satisfy the conditions of utility maximizing behavior. A 

well known property of Fourier series expansions is that they converge to some continuous function and 

therefore can represent a nice utility function. This allowed, Fisher (1989) as well as Fisher and Fleissig 

(1994) to satisfy these conditions by estimating models based on Fourier series expansions, using US data. 

However, Barnett and Yue (1988) suggest that the trigonometric (sine and cosine profiles) cycles that 

characterize Fourier series expansions are not necessarily appropriate for economic data. Against this 

background, they propose using a Muntz-Szatz expansion, which in fact is globally flexible provided that all 

the models coefficients are positive, and calls it an Asymptotically Ideal Model (AIM). Yue (1991) uses the 

data from Fisher‟s work, which satisfies Varian‟s (1982) GARP and Separability tests, to estimate an AIM. 
 

Yue (1991) estimates this model and creates series of the Allen partial elasticities by estimating these for each 

year in an attempt to capture the dynamics of the money demand process. Regretfully though, the model, 

while providing many new insights, still finds the case of „the missing money‟ as well as other anomalous 

periods in money demand to be illusive. Though, a brilliant attempt, a number of short comings remain with 

the approach of Yue. The main shortcomings of Yue are addressed by Drake Fleissig and Swofford (DFS) 

(2003). These shortcomings are; firstly, it is a well established fact that money demand is a dynamic process 

and no attempt was made to capture this trait explicitly. Also, in the light of Blackorby and Russell (1981 and 

1989), the Morishima elasticity of substitution is the more appropriate elasticity measure. However, Yue 

estimates the Allen Partial elasticities. Additionally, since we have a system of equations in addition to 

inequality restrictions on the parameters hypotheses test were not carried out. 
 

Not withstanding their refinements, and especially so being the first attempt, DFS specified the dynamics 

inappropriately, thus concluding that the estimates were not invariant to the dropped share equation. This 

rendered their use of a model which may be particularly troublesome, in terms of biased estimates (Hendry 

and Mizon (1978)), because of the implied common factor restrictions imposed by the use of an AR(1) 

specification of the errors to capture the dynamics. It is these shortcomings that we wish to address in our 

discourse where an AIM will be used to estimate the expenditure system governing money Demand in the US. 

We intend to capture the dynamics of the money demand process by explicitly including the lags of the share 

equations as independent variables, Hendry and Mizon (1978), when we estimate the share equations. We will 

discuss these issues further as we proceed. The remainder of the article is organized as follows. Section 2 

presents the model in its pure theoretical form. Section 3 discusses the data. Section 4 reports and discusses 

the estimates, while section 5 gives the conclusions.   
 

Section 2: The Model 
 

The Asymptotically Ideal Model (AIM) as proposed by Barnett and Jonas (BJ) (1983) is a Seminonparametric 

method as defined by Gallant (1981), and can be applied to the indirect utility function of a utility maximizing 

consumer facing a linear budget constraint. As is usually the case, due to homogeneity, in such a system we 

can normalize prices by expenditure in specifying the AIM.  Commensurate with the fact that the Muntz - 

Szatz expansion can capture both global regularity and Global flexibility we can obtain arbitrarily accurate 

elasticity estimates over the entire space, rather than locally as obtains in the other specifications. In the work 

of BJ the Kth order Muntz – Szatz expansion is given as: 
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Where n is the number of goods and 0a , ika , ijkma , …, are parameters to be estimated for i, j = 1, …, n ; k, m = 

1, …, ; and vi‟s are expenditure normalized prices. Also following Barnett and Yue (BY) (1988) we let the 

exponent set be = {(k): (k) = 2
-k

, k  N}. BY shows that eliminating diagonal elements does not alter the 

properties of f(v) and so in what follows we consider f(v) for  i  j. To fix ideas we believe it is instructive to 

present a simple form of the expansion, consequently with three goods and K = 1 (  = {1/2}), that is, a 

first order expansion we have: 
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where, 4a  = 12a  + 21a , 5a  = 13a  + 31a , 6a  = 23a  + 32a , and  

7a  = 123a  + 132a  + 213a  + 231a  + 312a  + 321a . 
 

Of course, the demand functions are found from the modified Roy‟s identity, hence if we denote demand for 

good i by qi , then qi is given by: 
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Therefore the share equations are given by: 
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Now, if we let 
 

(5) Si = vif(v)/ vi ,  i. 
 

Then, 
 

(6) si = Si/S 

where, S = 
i

iS  

With this model setup in mind we want to specify explicitly the model to be estimated. In what follows we 

will estimate a system with three goods for K = 2. This renders that the equations we are interested in are: 
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Since, we have only three goods, as is well known we need only estimate two of the share equations, which 

we can calculate from the following: 
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To impose the homogeneity property we impose the restriction 1b  + 2b  + 3b  = 1, hence we have one less 

parameter to estimate when we do the actual estimation. Also, the fact that we are using econometric 

techniques requires that we specify errors and how they enter the equations. Following the usual procedure the 

errors are allowed to enter the share equations additively implying that the actual equations estimated are: 

 

si = S i/S + et,  i. 

 

DFS defines S i/S = h(vt, ) 

 

where  is the set of parameters to be estimated. 

 

As mentioned earlier DFS considers two possibilities for capturing the dynamics of the money demand 

process; being an AR(1) representation of the errors or explicitly including the lagged shares in the estimated 

share equations. The AR(1) specification is especially suspect in this model because of the complex nature of 

the equations being estimated which results in common factor restrictions (CFR) that are almost intractable. 

As is well known CFR‟s result in biased estimates and since we cannot trace the CFRs, and therefore afford 

ourselves the possibility of testing them, this modeling strategy is not recommended. To make the argument 

explicit consider the simple model (Spanos 1986 Pp. 504 - 507): 
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Note that model (A) implies that: 
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Therefore solving recursively for it and substituting into ty  gives: 

(C) ty  =  tx
'

  +  )( 1

'

1





 tit

m

i

i xy    + ut 

Now, comparing models (B) and (C) reveals that the two are only equivalent if the following is true: 

i  = - i , i = 1, 2, …, m, which are in fact the implied common factor restrictions if one were to specify 

model (A), when the „true‟ model is model (B). 

Furthermore, DFS‟s argument for using the AR(1) specification is that the dynamic representation resulting 

from including the lagged shares as explanatory variables is not invariant to the omitted equation is a direct 

consequence of how they chose to represent the dynamics. In particular, they have a model with three goods 

and consider their specification: 
 

(11) Sit = hi(vt, ) + ihi(vt-1, ) +  bi1S1t-1 + b21S2t-1 + b31S3t-1 + Uit 
 

where, Sit is the actual share for good i in period t. However, the shares must sum to 1 in all periods and 

therefore including all the lagged shares on the right hand side of the equation results in a problem of 

multicollinearity, rendering that the parameter estimates will be very sensitive to the model specification. 

Therefore in specifying such a dynamic process it is judicious to drop one of the lagged shares from the list of 

explanatory variables. Thus, the model that will be estimated here, will have share equations of the form: 
 

(12) Sit = hi(vt, ) +  bi1S1t-1 + b21S2t-1 + Uit, for i = 1, 2. 
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Section 3: The Data 

The Data used here is a subset of a comprehensive data compilation referred to as the Monetary Services 

Index (MSI) at the Federal Reserve Bank of St. Louis. A detailed description of the data can be found in 

Anderson, Jones and Nesmith (AJN) (1997a, b, c). The MSI measures period by period flow of monetary 

services to households, deriving from their utilization of monetary assets. This renders that the prices that we 

refer to in this study are in fact user cost as defined by Donovan (1977) and formally derived by Barnett 

(1978). It is also worthwhile noting that monetary assets are in general not perfectly substitutable, and, thus, 

the index used is the TÖrnquist-Theil (the discrete time equivalent of the Divisia index), which in the 

monetary literature is simply referred to as the Divisia Monetary index. 
 

To give a more concrete sense of the issues Barnett‟s formulae is: 
 

itp  = tp*
 

t

itt
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where, itp  is the user cost of asset i in period t. 

            tp*
 is an aggregate index of goods and services prices and of durable goods real 

            prices during period t. 

           tR  is the yield on a bench mark asset. 

           itr  is the nominal yield on asset i during period t. 
 

Clearly, for the purposes of the model we intend to estimate we need income data which can be calculated as 

(see Anderson, Jones and Nesmith (1997c), table 1): 
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where, ty is total expenditure on monetary assets. 

nom

itm  is the nominal quantity of asset i in period t. 
 

The Nominal TÖrnquist-Theil monetary services index (MSI) is then given by: 
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where,  2/)( 1,  tiitit ww , and itw  is simply the budget share of asset i in period t. 
 

The data used is then, quarterly US data from 1960 to the first quarter of 2004. The data has been seasonally 

adjusted so that there is no need to include seasonal dummies into what is an already complex model. We 

assume that the monetary assets which comprise M2 are weakly separable from all other goods and therefore 

only these assets are included in the model we estimate. Following Yue (1991) the categories in which we 

group the monetary assets are: 
 

A1 = currency, demand deposits and other checkable deposits. 

A2 = Savings deposits in Commercial banks and thrifts, super NOW accounts and money  

         market deposit accounts. 

A3 = small time deposits at commercial banks and thrifts. 
 

Section 4: Estimation 

The model given in (12) is estimated, but only for two of the share equations, and consistent with 

circumventing the collinearity problem the lagged share of A3 never appears in any of the estimated 

equations. The parameter estimates are given in table 1 and time series of the elasticities are reported
1
 in table  

2.  These time series were generated by calculating the elasticity in each of the periods from 1974 fourth 

quarter, to the first quarter of 2004. One should note that for space constraints only some of the elasticities are 

reported, however, the remainder can be obtained from the author upon request. Due to the highly complex 

nature of the model we wish to specify the formulas for the elasticity estimates (see Yue (1991), p. 42 for the 

Allen-Partials; and DFS (2003), p. 110 for the Morishima‟s): 

                                                 
1
 All tables and graphs are reported in the appendix beginning at page 15. 
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Compensated  Allen Partials
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for  i  j, and (NB: all variables referred to here are consistent with previous definitions(see section 3)) 
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for  i  j. 

 

Income Elasticities: 
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Thus, the uncompensated Allen Partials are: 
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Therefore, the Morishima elasticities are: 
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ij s   , note that all own elasticities here are zero. 
 

As Blackorby and Russell make abundantly clear, the Allen Partials are inappropriate due to their symmetry 

as well as the fact that they may indicate that assets are substitutes when they are in fact complements; we 

regard the Allen Partials as unreliable. Contingent on this line of reasoning the discussion that follows focuses 

on the Morishima elasticities, even though, the Allen partials are still reported for completeness. Of course, it 

should be noted that the Morishima elasticities presents a troubling inconsistency in that it may suggests that 

good i is a complement to good j, but that good j is a substitute to good i. Again, the reader is reminded that 

the elasticity estimates presented are for the fourth quarter of 1974 through to the first quarter of 2004, hence 

the reference 1, 2 and 7 in the quarters section in the table and plots refers to, respectively, the fourth quarter 

of 1974; the first quarter of 1975 and the second quarter of 1976. The remainder of the estimates should be 

interpreted in similar fashion. 
 

Do our Empirical Findings concur  with the theory? 
 

Since, the own Morishima elasticities are zero by construction the metric available to us as a check on the law 

of demand is the own Allen-Partials. As figure 1 shows all these estimates are negative for A1 (similar results 

obtain for A2 and A3), hence we can conclude that the law of demand is satisfied empirically. Figures 4-7, 

with all the elasticity estimates positive, confirms that A1, A2, and A3 are substitutes, thus confirming the a-

priori expectation arising from the theory. However, there still remains one gray area represented in the fact 

that figure 8 suggests that A3 and A2 are complements, while, on the other hand, figure 9 suggests that A2 

and A3, for most of the sample period are substitutes. This is exactly the inconsistency, which may arise from 

using Morishima elasticities, in that there is no guarantee that the cross elasticities between any two goods 

will have the same sign for cross elasticity ij versus ji. Naturally, in any model of money demand one would 

want to test the long standing hypotheses surrounding money demand. For instance, money neutrality is a key 

theoretical issue and should be tested. Unfortunately, no measure of the overall price level
3
 appears explicitly 

in this model and so that postulate is not testable in the framework. 

                                                 
2
 The model estimation was conducted using the SAS system 8.0, however, the derivatives that appear in the elasticity 

estimates were obtained using Mathematica 5.0. 
3
 Had we not postulated that monetary assets are weakly separable from all other goods, then an all other goods “asset” 

would appear in the model, and it‟s user cost would have been some measure of the overall price index, from which we 

could test the money neutrality hypothesis. 
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Another of the major hypotheses is the unitary income elasticity of money demand (see, among other studies, 

Yue (1991), p.45), and in this empirical exercise it is rather interesting that both A2, which corresponds to 

Poole‟s definition of MZM (see AJN (1997c)) and A3, which is essentially M2, both have income elasticities 

equal to one. Verification of this result is presented in Table 1 and figures 11 and 12. The result is rather 

robust, as it obtains for all periods including the anomalous periods from the mid to late 1970‟s into the early 

1980‟s (see, inter alia, Yue (1991), p.46).  In contrast to these it seems that M1, which is identical to A1 here, 

is too narrow a measure of money to adequately reflect its properties. In fact, the introduction of super NOW 

accounts and other monetary assets which not only almost fully replicate the liquidity properties of currency, 

but also have interest bearing characteristics, seems to have resulted in a complete reversal of the income 

elasticity of A1 in the late 1970‟s (see figure 10). That is, agents in the economy no longer demanded more 

notes and coins in response to increases in income, but quite the contrary, chose to hold less currency in 

response to changes in income. 
 

Furthermore, the discussion on money demand sought to address the issue of whether or not the money 

demand process is stable. This study sheds some light on the issue, but does not afford us any unequivocal 

conclusions. In particular, the stability of the of the income elasticity estimates suggests that the money 

demand function is stable. Contrary to this though, we find that the cross elasticities range in some instances 

from 0.1 to 0.7, which represent up to a 600 per cent change in the elasticity estimates over the period. This 

would suggest that the elasticity estimates are highly unstable. Although, one should bear in mind the 

substantial innovations in the market for monetary assets over the period, which caused significant changes in 

user cost and asset shares of total expenditure on monetary assets.  
 

Section 5: Conclusion 
 

Microeconomic estimation of demand systems has matured to the stage that they now rival crude aggregated 

structural models of economic activity. The asymptotically ideal model, first semiparametrically estimated by 

Barnett and Yue (1988) is used here to produce estimation results generally consistent with the theory 

underlying the money demand process. The major findings of the discourse are that the unitary income 

elasticity hypothesis is satisfied, and in general monetary assets are substitutes as well as the law of demand is 

satisfied by the model. However, no definitive answers could be found as to whether or not the money 

demand process is stable, but this may be due to the rapid rate of innovation in this market. Further research 

should test whether or not monetary assets are weakly separable from all other goods, and if not allow for the 

testing of the money neutrality hypothesis. Of importance for future considerations are also obtaining a stable 

money demand function. It is important that the trend of doing microeconometric estimation of such systems 

is continued, as it seems rather promising. In light of this, we need be reminded that the user cost of monetary 

assets is the appropriate price. Also, in forming monetary aggregates it is desirable to use Divisia indices 

which allow for different degrees of substitutability of the assets, as opposed to simple sum indices, which 

implicitly assumes that all assets are perfect substitutes.  
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Appendix: Tables and Graphs 
 

Table 1: ITSUR Parameter Estimates 
 

 

                          Nonlinear ITSUR Summary of Residual Errors 

 

                  DF       DF                                                        Adj 

Equation        Model    Error         SSE         MSE    Root MSE    R-Square       R-Sq 

 

W1               13.5    162.5      0.0346    0.000213      0.0146      0.9855     0.9844 

W2               13.5    162.5      0.0549    0.000338      0.0184      0.9468     0.9427 

 

 

                              Nonlinear ITSUR Parameter Estimates 

                                                Approx                  Approx 

                  Parameter       Estimate     Std Err    t Value     Pr > |t| 

 

                  k1              0.001133    0.000240       4.73       <.0001 

                  k2              0.000847    0.000221       3.83       0.0002 

                  b1              0.396073      0.0559       7.09       <.0001 

                  b2              0.632676      0.0586      10.79       <.0001 

                  b4              0.033606      0.0279       1.20       0.2309 

                  b5               0.05126      0.0273       1.88       0.0622 

                  b6              0.165255      0.0710       2.33       0.0211 

                  b7              0.303556      0.0856       3.55       0.0005 

                  b8              0.041539      0.0680       0.61       0.5419 

                  b9              -0.47176      0.2034      -2.32       0.0216 

                  b10             -0.91359      0.1753      -5.21       <.0001 

                  b11             1.014202      0.0975      10.40       <.0001 

                  b12             -1.03568      0.0937     -11.06       <.0001 

                  b13             -0.23702      0.1633      -1.45       0.1485 

                  b14             -0.17707      0.1289      -1.37       0.1715 

                  b15              0.68555      0.0693       9.89       <.0001 

                  b16             -1.15654      0.0977     -11.83       <.0001 

                  b17             0.337248      0.1952       1.73       0.0859 

                  b18             -0.53923      0.1341      -4.02       <.0001 

                  b19             0.009497      0.0972       0.10       0.9223 

                  b20              0.07711      0.1775       0.43       0.6645 

                  b21             0.022534      0.1454       0.15       0.8770 

                  b22             -0.00657      0.1397      -0.05       0.9626 

                  b23             -0.65807      0.1625      -4.05       <.0001 

                  b24             0.043917      0.2759       0.16       0.8737 

                  b25             -1.83962      0.3746      -4.91       <.0001 

                  b26             3.295423      0.3436       9.59       <.0001                                
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Table 2: Morishima and Income Elasticities. 
 

quarter M12 M21 M13 M31 M23 M32 Y10 Y20 Y30 

1 0.0779 0.049 0.0931 0.0343 0.0202 -8.5E-12 0.5096 1 1 

2 0.078 0.0505 0.0887 0.039 0.0147 -1E-11 0.4827 1 1 

3 0.0724 0.0556 0.076 0.0507 0.0054 -1.3E-11 0.4217 1 1 

4 0.069 0.0597 0.0704 0.0576 0.0023 -1.5E-11 0.3838 1 1 

5 0.0707 0.0612 0.0729 0.0577 0.0037 -1.5E-11 0.3728 1 1 

6 0.0707 0.0599 0.0738 0.0552 0.0051 -1.5E-11 0.3879 1 1 

7 0.069 0.058 0.0719 0.0539 0.0045 -1.4E-11 0.4051 1 1 

8 0.0693 0.0552 0.075 0.0478 0.0086 -1.3E-11 0.4404 1 1 

9 0.0749 0.0497 0.0854 0.0387 0.0143 -1.1E-11 0.4931 1 1 

10 0.072 0.0515 0.0771 0.0454 0.0073 -1.3E-11 0.463 1 1 

11 0.0725 0.0509 0.076 0.0466 0.005 -1.4E-11 0.4608 1 1 

12 0.0725 0.0492 0.0761 0.045 0.0051 -1.3E-11 0.4754 1 1 

13 0.0706 0.0532 0.0693 0.055 -0.002 -1.6E-11 0.4216 1 1 

14 0.0698 0.0596 0.0682 0.0622 -0.003 -1.8E-11 0.3665 1 1 

15 0.0712 0.0658 0.066 0.0769 -0.01 -2.2E-11 0.2842 1 1 

16 0.0724 0.0645 0.0719 0.0653 -8E-04 -1.8E-11 0.3274 1 1 

17 0.0844 0.0903 0.0853 0.0873 0.0022 -2.3E-11 0.1111 1 1 

18 0.0843 0.0817 0.0923 0.0628 0.0168 -1.6E-11 0.232 1 1 

19 0.0873 0.0732 0.0961 0.056 0.0163 -1.5E-11 0.2885 1 1 

20 0.0999 0.0815 0.0975 0.0897 -0.006 -2.7E-11 0.0997 1 1 

21 0.1242 0.1193 0.1221 0.1822 -0.025 -5.4E-11 -0.431 1 1 

22 0.1348 0.1299 0.1342 0.1836 -0.021 -5.4E-11 -0.509 1 1 

23 0.1271 0.0994 0.127 0.2544 -0.048 -8.9E-11 -0.605 1 1 

24 0.1154 0.1008 0.1127 0.253 -0.049 -8.3E-11 -0.56 1 1 

25 0.1534 0.1487 0.1591 0.2525 -0.031 -7.6E-11 -0.861 1 1 

26 0.1525 0.1223 0.156 0.2246 -0.033 -7.6E-11 -0.683 1 1 

27 0.1593 0.1286 0.1642 0.2278 -0.031 -7.7E-11 -0.74 1 1 

28 0.1595 0.1245 0.1739 0.3154 -0.047 -1.1E-10 -1.014 1 1 

29 0.1451 0.1109 0.1662 0.4018 -0.06 -1.5E-10 -1.189 1 1 

30 0.1534 0.1245 0.1737 0.3792 -0.056 -1.3E-10 -1.192 1 1 

31 0.1514 0.1148 0.1716 0.3778 -0.057 -1.4E-10 -1.151 1 1 

32 0.1529 0.1272 0.2058 0.6526 -0.072 -2.3E-10 -2.07 1 1 

33 0.1465 0.1227 0.1792 0.5038 -0.066 -1.8E-10 -1.553 1 1 

34 0.1555 0.1775 0.1691 0.3546 -0.043 -9.8E-11 -1.269 1 1 

35 0.1483 0.1729 0.1539 0.2722 -0.03 -7.3E-11 -0.974 1 1 

36 0.1499 0.1712 0.1557 0.2723 -0.03 -7.4E-11 -0.975 1 1 

37 0.1484 0.1533 0.1503 0.2092 -0.02 -6E-11 -0.718 1 1 

38 0.1515 0.1539 0.1536 0.2075 -0.019 -6E-11 -0.726 1 1 

39 0.1671 0.1769 0.1776 0.3012 -0.033 -8.7E-11 -1.153 1 1 

40 0.163 0.1508 0.1676 0.2269 -0.024 -7.1E-11 -0.823 1 1 

41 0.1543 0.1393 0.1614 0.2638 -0.036 -8.5E-11 -0.872 1 1 

42 0.1647 0.1816 0.1767 0.3244 -0.036 -9.2E-11 -1.227 1 1 

43 0.1665 0.1855 0.1779 0.3184 -0.034 -8.9E-11 -1.228 1 1 

44 0.1665 0.1907 0.1766 0.3103 -0.031 -8.5E-11 -1.217 1 1 

45 0.1593 0.1697 0.1646 0.2506 -0.025 -7.2E-11 -0.942 1 1 

46 0.1437 0.1332 0.1436 0.1698 -0.015 -5.2E-11 -0.507 1 1 

47 0.1402 0.1306 0.1403 0.1901 -0.022 -5.9E-11 -0.552 1 1 

48 0.15 0.1576 0.1533 0.2314 -0.024 -6.7E-11 -0.808 1 1 

49 0.1575 0.1766 0.1607 0.2313 -0.018 -6.4E-11 -0.894 1 1 

50 0.1501 0.1605 0.151 0.1887 -0.01 -5.4E-11 -0.681 1 1 

51 0.1688 0.1972 0.175 0.2727 -0.022 -7.4E-11 -1.128 1 1 

52 0.1799 0.2152 0.1849 0.2676 -0.015 -7.1E-11 -1.208 1 1 

53 0.1944 0.2209 0.2139 0.3854 -0.036 -1.1E-10 -1.65 1 1 

54 0.1785 0.1911 0.1871 0.2806 -0.024 -8.1E-11 -1.176 1 1 

55 0.1866 0.2059 0.1962 0.2958 -0.023 -8.4E-11 -1.298 1 1 

56 0.1848 0.1894 0.1921 0.2617 -0.02 -7.7E-11 -1.137 1 1 

57 0.1673 0.1457 0.1702 0.1993 -0.018 -6.5E-11 -0.732 1 1 
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58 

 

0.1663 

 

0.1245 

 

0.1665 

 

0.1464 

 

-0.009 

 

-5.1E-11 

 

-0.472 

 

1 

 

1 

59 0.1737 0.0891 0.1862 0.0461 0.0323 -1.7E-11 0.0669 1 1 

60 0.1691 0.0799 0.1741 0.0611 0.0127 -2.5E-11 0.0499 1 1 

61 0.1642 0.0881 0.1651 0.0825 0.0032 -3.3E-11 -0.071 1 1 

62 0.1635 0.1143 0.1632 0.1289 -0.006 -4.7E-11 -0.361 1 1 

63 0.1683 0.1267 0.169 0.1555 -0.011 -5.5E-11 -0.519 1 1 

64 0.174 0.1354 0.1743 0.1471 -0.005 -5E-11 -0.539 1 1 

65 0.1824 0.1516 0.1876 0.2135 -0.019 -7.2E-11 -0.855 1 1 

66 0.1828 0.1681 0.1948 0.285 -0.031 -9.2E-11 -1.142 1 1 

67 0.1862 0.1927 0.2012 0.3285 -0.033 -9.8E-11 -1.363 1 1 

68 0.1869 0.2005 0.1969 0.2938 -0.024 -8.5E-11 -1.279 1 1 

69 0.1965 0.2199 0.2078 0.3154 -0.023 -8.9E-11 -1.439 1 1 

70 0.2239 0.2931 0.2341 0.3677 -0.016 -9.1E-11 -1.905 1 1 

71 0.2326 0.3243 0.2332 0.3283 -9E-04 -7.7E-11 -1.899 1 1 

72 0.2336 0.3267 0.2275 0.2836 0.0108 -6.6E-11 -1.771 1 1 

73 0.2552 0.3638 0.2481 0.3177 0.0105 -7.2E-11 -2.06 1 1 

74 0.2383 0.3305 0.2259 0.2463 0.0226 -5.7E-11 -1.682 1 1 

75 0.2347 0.3199 0.2196 0.2164 0.0298 -5E-11 -1.544 1 1 

76 0.2193 0.2862 0.2054 0.181 0.0341 -4.3E-11 -1.278 1 1 

77 0.2219 0.2822 0.2075 0.1748 0.0352 -4.2E-11 -1.256 1 1 

78 0.2368 0.306 0.2202 0.1952 0.0334 -4.7E-11 -1.445 1 1 

79 0.2633 0.3451 0.2439 0.2322 0.0298 -5.5E-11 -1.773 1 1 

80 0.2638 0.3252 0.2424 0.2045 0.0337 -5E-11 -1.63 1 1 

81 0.2677 0.3097 0.2493 0.2099 0.0272 -5.4E-11 -1.623 1 1 

82 0.2434 0.242 0.2264 0.135 0.0377 -3.8E-11 -1.075 1 1 

83 0.2229 0.1897 0.2127 0.0798 0.0515 -2.3E-11 -0.621 1 1 

84 0.22 0.1955 0.2097 0.0939 0.0447 -2.8E-11 -0.691 1 1 

85 0.207 0.182 0.2009 0.0745 0.0541 -2.1E-11 -0.524 1 1 

86 0.2115 0.2143 0.2003 0.1027 0.0479 -2.8E-11 -0.76 1 1 

87 0.2364 0.2859 0.2177 0.1627 0.0405 -4.1E-11 -1.277 1 1 

88 0.2347 0.301 0.2127 0.1521 0.0506 -3.6E-11 -1.276 1 1 

89 0.219 0.2904 0.1979 0.1243 0.0637 -2.8E-11 -1.093 1 1 

90 0.2273 0.3214 0.2021 0.1384 0.0657 -3E-11 -1.258 1 1 

91 0.2341 0.3463 0.2074 0.1609 0.0614 -3.4E-11 -1.428 1 1 

92 0.2143 0.3139 0.1901 0.1138 0.0801 -2.4E-11 -1.106 1 1 

93 0.203 0.2997 0.1819 0.096 0.0895 -2E-11 -0.965 1 1 

94 0.197 0.2992 0.1766 0.0747 0.1092 -1.4E-11 -0.864 1 1 

95 0.2046 0.3266 0.1795 0.0949 0.101 -1.8E-11 -1.043 1 1 

96 0.2006 0.3269 0.1756 0.0794 0.1157 -1.5E-11 -0.975 1 1 

97 0.2281 0.3809 0.1927 0.1207 0.0975 -2.3E-11 -1.363 1 1 

98 0.2398 0.4444 0.1925 0.1165 0.1201 -2E-11 -1.562 1 1 

99 0.2703 0.5336 0.211 0.158 0.1152 -2.5E-11 -2.043 1 1 

100 0.2929 0.6063 0.2202 0.1667 0.1262 -2.5E-11 -2.342 1 1 

101 0.3029 0.629 0.2245 0.1673 0.1299 -2.5E-11 -2.438 1 1 

102 0.3058 0.6562 0.2205 0.1555 0.1433 -2.2E-11 -2.481 1 1 

103 0.3202 0.7081 0.2222 0.149 0.1577 -2E-11 -2.646 1 1 

104 0.2845 0.6498 0.1873 0.0803 0.2048 -8.8E-12 -2.14 1 1 

105 0.277 0.646 0.1794 0.067 0.2205 -6.5E-12 -2.059 1 1 

106 0.2859 0.6618 0.1917 0.0961 0.1933 -1.2E-11 -2.234 1 1 

107 0.3452 0.8127 0.2441 0.2107 0.144 -2.8E-11 -3.206 1 1 

108 0.3576 0.8489 0.2463 0.2027 0.1536 -2.7E-11 -3.32 1 1 

109 0.4056 1.0159 0.2896 0.3092 0.1339 -4E-11 -4.252 1 1 

110 0.4317 1.1397 0.3024 0.3354 0.1423 -4.1E-11 -4.748 1 1 

111 0.442 1.2119 0.298 0.3155 0.1598 -3.6E-11 -4.92 1 1 

112 0.4168 1.1596 0.2696 0.2514 0.1811 -2.8E-11 -4.508 1 1 

113 0.4392 1.2566 0.2809 0.271 0.1853 -2.9E-11 -4.906 1 1 

114 0.4183 1.221 0.2661 0.2515 0.1919 -2.7E-11 -4.686 1 1 

115 0.382 1.1338 0.2429 0.2201 0.1988 -2.3E-11 -4.238 1 1 

116 0.4292 1.3319 0.2641 0.249 0.2101 -2.5E-11 -5.03 1 1 

117 0.4169 1.3047 0.2533 0.2288 0.2179 -2.2E-11 -4.86 1 1 

118 0.3879 1.2203 0.2328 0.1945 0.2278 -1.9E-11 -4.436 1 1 
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Figure 1: Own Allen Partial for A1 
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Figure 2:  Allen Partial between A1 and A2 
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Figure 3:  Allen Partial between A1 and A3 
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Figure 4:  Morishima Partial between A1 and A2 
 

M12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113

QUARTER 1974:4-2004:1

E
L

A
S

T
IC

IT
IE

S

M12

 
 

Figure 5:  Morishima Partial between A2 and A1 
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Figure 6:  Morishima Partial between A1 and A3 
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Figure 7:  Morishima Partial between A3 and A1 
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Figure 8:  Morishima elasticity between  A2 and A3 
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Figure 9:  Morishima elasticity between  A3 and A2 
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Figure 10:  Income elasticity of  A1  
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Figure 11:  Income elasticity of  A2  
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Figure 12:  Income elasticity of  A3  
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